(American Society of Agronomy/Biomass Magazine) A new study, led by Augustine Obour at Kansas State University, looks at how three varieties of camelina perform when grown in two different regions within the Great Plains.
The end goal is to find the camelina variety that performs best in each location or environment.
“It’s actually a challenge to identify alternative crops that are well adapted to semi-arid areas of the Great Plains,” says Obour. “Plus, these crops have to fit into existing crop rotations.”
That’s where camelina excels. It’s a short-season, cold-tolerant crop that grows well on marginal lands. It is also compatible with existing farm equipment used for grain crops.
Oil extracted from camelina seeds has several uses. It can be used for biodiesel and renewable jet fuel production. It is also a good source of α-linolenic acid, a precursor for other healthy fatty acids essential for human and animal health. Together with camelina meal, the oil can also be used to manufacture adhesives, coatings, gums, resins, and varnishes.
…
Over the course of three years, Obour and his colleagues grew three different camelina varieties in the two test sites. This way, the researchers could test how camelina genetics and environmental conditions together affected yield and oil content.
All three camelina varieties performed similarly at Moccasin, despite their genetic differences. At Hays, however, one variety, called Blaine Creek, had 42 percent higher seed yields than the other two. “This highlights the importance of looking at both crop genetics and environmental conditions,” says Obour.
Overall, camelina seed yields were 54 percent lower at Hays than at Moccasin. The researchers also found that camelina oil content was lower at Hays. However, seed protein content was significantly higher at Hays.
Oil composition was different between the two test sites as well.
…
“The next line of research is selecting camelina varieties that are tolerant to heat stress,” says Obour. That will allow for improved seed yield, oil content, and fatty acid profile of camelina grown across the central Great Plains.
Read more about Obour’s work in Agronomy Journal. READ MORE Journal articles:
https://dl.sciencesocieties.org/publications/aj/articles/108/2/656?highlight=&search-result=1
https://dl.sciencesocieties.org/publications/jeq/articles/46/3/641?highlight=&search-result=1
https://dl.sciencesocieties.org/publications/aj/articles/108/1/349?highlight=&search-result=1